

2012年文系第1問

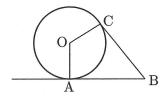
- 1 次の設問の空欄を、あてはまる数値や記号、式などで埋めなさい。
- $(1) (2x+3y)^3 + (2x-3y)^3$ を展開すると 1 になる.
- (2) -1 < a < 0 < b < c とするとき,

$$-\frac{a}{c}$$
, $\frac{a}{c}$, $\frac{1}{ac}$, $-\frac{1}{ab}$, $-\frac{1}{ac}$

の5つの数のうち、小さい方から2番目の数は $\boxed{2}$ であり4番目の数は $\boxed{3}$ である.

 $(3) \ \frac{\pi}{2} \le \theta < \frac{3\pi}{2} \mathcal{O} \mathcal{E} \mathcal{E} \mathcal{E}$

$$2\sin^3\theta - \sin\theta = 0$$


の解をすべて記すと $\boxed{4}$ である.

(4) a, bを定数とする x に関する 3 次方程式

$$2x^3 + ax^2 + bx - 10 = 0$$

の 2 つの解が x=1, 2 であるとき, $a=\begin{bmatrix} 5 \end{bmatrix}$, $b=\begin{bmatrix} 6 \end{bmatrix}$ であり, もう 1 つの解は $\begin{bmatrix} 7 \end{bmatrix}$ である.

- (5) P, E, N, C, I, Lの文字が1つずつ刻まれているタイルが6枚ある. これらを横1列に並べるとき, P が E より左で, かつ, Nが E より右となる確率は 8 である.
- (6) a を定数とする方程式 $x^3-6x^2-a=0$ の異なる実数解は、a の値が $\boxed{9}$ の場合には 3 個、 $\boxed{10}$ ま たは $\boxed{11}$ の場合には2個, $\boxed{12}$ または $\boxed{13}$ の場合には1個, それぞれ存在する.
- (7) α を実数として、空間における原点 O と 2 点 A(-1, α , α)、B(1, 2, α) を考える. OA と OB の内積 $OA \cdot OB$ を最小にする α の値は $\boxed{14}$ であり、このとき、三角形 OAB の面積は $\boxed{15}$ である.
- (8) 点Oを中心とする半径1の円の円周上に点Aをとり、点Aにおける接線上にAB = 2となる点Bをとる. 次に、点BからBC=2となるように円周上に点Aとは異なる点Cをとる.このとき,三角形OACの面 積は 16 であり、 $\sin \angle CAB = 17$ である.

