

2013 年 医学部 第 1 問
1 次の \square にあてはまる答を記せ、ただし、 (5) において、必要ならば $\log_{10}2 = 0.3010$ を用いてよい、
(1) OA:OB = 1:3 である三角形 OAB において,辺 AB の中点を M,線分 OM を 1:2 に内分する点を N とし, \angle AOB の大きさを θ とする.
(i) $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とするとき, \overrightarrow{a} と \overrightarrow{b} を用いて \overrightarrow{NA} を表すと, $\overrightarrow{NA} = $ $\overrightarrow{a} - $ \overrightarrow{b} である.
(ii) \overrightarrow{ON} と \overrightarrow{NA} が垂直であるとき, $\cos heta$ の値は \square である.
(2) $(x+2y+3z)^6$ の展開式における x^4y^2 の係数は であり, x^3y^2z の係数は である. (3) 点 (x,y) が不等式 $x^2+y^2 \le 4$ の表す領域を動くとする.このとき, $3x+y$ は, $x=$, $y=$ において最大値 をとり, $x=$, $y=$ において最小値 をとる. (4) A,B,Cの3つの袋があり,Aには赤球 2 個と白球 2 個,Bには白球 1 個と青球 3 個,さらに,Cには赤球 2 個と白球 1 個と青球 1 個が入っている.いま,A から 1 個の球を取り出し,B から 1 個の球を取り出
し,Cから1個の球を取り出す.
(i)取り出した3個の球の色が1種類となる確率は である.
(ii)取り出した3個の球の色が2種類となる確率は である.
(iii)取り出した3個の球の色が3種類となる確率は である.
(5) 条件 $a_1 = 5$, $a_{n+1} = 2a_n - 3$ によって定まる数列 $\{a_n\}$ の一般項は $a_n = \square$ で与えられる. この数
列の初項から第 n 項までの和を S_n とおくとき, S_8 の値は \square であり,不等式 $\frac{S_n}{3} > n+16666$ を満
たす正の整数 n のうちで最小のものは $\left[\right]$ である。