

2011年第2問

2 \triangle ABC の頂点を通らない直線 ℓ が,辺 AC,辺 BC の B 方向への延長線,および辺 AB と,それぞれ点 P, Q,R で交わり,

 $AP : PC = \alpha : 1$, $CQ : QB = \beta : 1$

であるとする. $\overrightarrow{CA} = \overrightarrow{a}$, $\overrightarrow{CB} = \overrightarrow{b}$ として, 次の各問に答えよ.

- (1) \overrightarrow{CR} を α , β , \overrightarrow{a} , \overrightarrow{b} で表し,等式 $\frac{AP}{PC} \cdot \frac{CQ}{QB} \cdot \frac{BR}{RA} = 1$ を証明せよ.
- (2) \triangle QRB, \triangle BCR, \triangle APR の面積比が 1:2:3 のとき, \triangle APR と \triangle CPR の面積比を求めよ.
- (3) (2) のとき,直線 CR と直線 AQ の交点を D とする.線分の長さの比 AD: QD を求めよ.