

2013 年 理系 第 1 問 1 以下の	
(1) 多項式 $2x^3 - 3x^2 + 2x - 8$ を $2x^2 - 1$ で割った余りは である。 (2) 不等式 $\sqrt{2x - 1} < \frac{1}{2}(x + 1)$ を満たす x の値の範囲は である。 (3) $a_1 = 1$, $\frac{1}{a_{n+1}} = \frac{1}{a_n} + 1$ $(n = 1, 2, 3, \cdots)$ で定義される数列 $\{a_n\}$ の一般項は である。 (4) 不等式 $\left(\frac{1}{2}\right)^{2x} > \frac{1}{2}\left(\frac{1}{16}\right)^x$ を満たす x の値の範囲は である。 (5) $\left(\begin{array}{cc} 2 & 1 \\ 4 & 2 \end{array}\right) \left(\begin{array}{cc} a & 3 \\ -2 & b \end{array}\right) = O$ が成り立つとき, a , b の値は $(a, b) =$ である。ただし, O は 2 次の	
(3) $a_1 = 1$, $\frac{1}{a_{n+1}} = \frac{1}{a_n} + 1$ ($n = 1, 2, 3, \cdots$) で定義される数列 $\{a_n\}$ の一般項は である. (4) 不等式 $\left(\frac{1}{2}\right)^{2x} > \frac{1}{2}\left(\frac{1}{16}\right)^x$ を満たす x の値の範囲は である. (5) $\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} a & 3 \\ -2 & b \end{pmatrix} = O$ が成り立つとき, a , b の値は $(a, b) = $ である.ただし, O は 2 次の	(1) 多項式 $2x^3 - 3x^2 + 2x - 8$ を $2x^2 - 1$ で割った余りは である.
(5) $\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$ $\begin{pmatrix} a & 3 \\ -2 & b \end{pmatrix}$ = O が成り立つとき, a , b の値は (a, b) = \Box である.ただし, O は 2 次の	(3) $a_1=1$, $\frac{1}{a_{n+1}}=\frac{1}{a_n}+1$ $(n=1,\ 2,\ 3,\ \cdots)$ で定義される数列 $\{a_n\}$ の一般項は である.