

2017年 歯学部 第 3 問

$$\boxed{3}$$
 $-\frac{3}{8} \le x \le \frac{3}{4}$ で定義された関数 $f(x)$ を

$$f(x) = \frac{3 - \sqrt{8x + 3}}{8} \sqrt{2\sqrt{8x + 3} - 8x}$$

で定める. 曲線 y=f(x) と x 軸および 2 直線 $x=-\frac{3}{8}$, $x=\frac{3}{4}$ で囲まれた図形の面積を S とするとき,次の問いに答えよ.

(1)
$$f\left(\frac{3}{4}\right)$$
と $f\left(-\frac{3}{8}\right)$ の値を求めよ.

(2) 定積分
$$\int_0^{\frac{2}{3}\pi} \frac{1}{2} (1 - \cos 4\theta) d\theta$$
 の値を求めよ.

(3)
$$0 \le \theta \le \frac{2}{3} \pi$$
 の範囲で関数

$$g(\theta) = \frac{(2\cos\theta + 1)^2 - 3}{8}$$

を考える. g と f の合成関数 $f(g(\theta))$ と $g(\theta)$ の θ に関する微分 $g'(\theta)$ の積 $f(g(\theta))g'(\theta)$ が

$$f(g(\theta))g'(\theta) = \frac{1}{8}(\sin 2\theta)^2 - \frac{1}{4}(\sin \theta)^2 - \frac{1}{4}(\sin \theta)^2(\cos \theta)$$

となることおよび (2) の値を利用して、面積 S を求めよ.