

2011年理系第3問

- 3 | 実数の組(p, q) に対し, $f(x) = (x p)^2 + q$ とおく.
- (1) 放物線 y = f(x) が点 (0, 1) を通り、しかも直線 y = x の x > 0 の部分と接するような実数の組 (p, q)と接点の座標を求めよ.
- (2) 実数の組 (p_1, q_1) , (p_2, q_2) に対して, $f_1(x) = (x p_1)^2 + q_1$ および $f_2(x) = (x p_2)^2 + q_2$ とお く. 実数 α , β (ただし $\alpha < \beta$) に対して

 $f_1(\alpha) < f_2(\alpha)$ かつ $f_1(\beta) < f_2(\beta)$

であるならば,区間 $\alpha \le x \le \beta$ において不等式 $f_1(x) < f_2(x)$ がつねに成り立つことを示せ.

(3) 長方形 $R:0 \le x \le 1$, $0 \le y \le 2$ を考える. また、4 点 $P_0(0, 1)$, $P_1(0, 0)$, $P_2(1, 1)$, $P_3(1, 0)$ をこの 順に線分で結んで得られる折れ線を Lとする. 実数の組(p, q)を, 放物線y = f(x)と折れ線Lに共有 点がないようなすべての組にわたって動かすとき,Rの点のうちで放物線y=f(x)が通過する点全体の 集合をTとする. RからTを除いた領域Sを座標平面上に図示し、その面積を求めよ.