

2010年情報工学部第4問

4 右図のように平面上に正六角形 ABCDEF がある. 時刻 n $(n=1, 2, 3, \cdots)$ において動点 P は正六角形の 6 つの頂点のいずれかにあり、時刻 1 では頂点 A にあるものとする. 時刻 n+1 には、時刻 n のときにあった頂点の隣り合う 2 つの頂点のいずれかに移動する. どちらの頂点に移動するかは同様に確からしいものとする. 時刻 n において、動点 P が頂点 A, B, C, D, E, F にある確率をそれぞれ a_n , b_n , c_n , d_n , e_n , f_n とする. 以下の問いに答えよ.

- (1) a_2 , b_2 , c_2 , d_2 , e_2 , f_2 を求めよ.
- (2) a_3 , b_3 , c_3 , d_3 , e_3 , f_3 を求めよ.
- (3) n が偶数のとき, $b_n + d_n + f_n$ を求めよ.
- (4) すべての時刻nに対して、 $b_n = f_n$ および $c_n = e_n$ が同時に成立することを数学的帰納法を用いて示せ.
- (5) m を 1 以上の整数とするとき, d_{2m} を m を用いて表せ.また, $\lim_{m\to\infty} d_{2m}$ を求めよ.