2012年工芸科学第2問

- 2 xyz 空間内に四面体 PABC がある. \triangle ABC は xy 平面内にある鋭角三角形とし,頂点 Pの z 座標は正とする. Pから xy 平面に下ろした垂線を PHとし,H は \triangle ABC の内部にあるとする. H から直線 AB,BC,CA に下ろした垂線をそれぞれ HK₁,HK₂,HK₃ とする. そのとき PK₁ \perp AB,PK₂ \perp BC,PK₃ \perp CA である. \angle PK₁H = α_1 , \angle PK₂H = α_2 , \angle PK₃H = α_3 とし, \triangle PAB, \triangle PBC, \triangle PCA の面積をそれぞれ S_1 , S_2 , S_3 とする.
- (1) \triangle HABの面積を α_1 , S_1 を用いて表せ.
- (2) 3つのベクトル $\overrightarrow{l_1}$, $\overrightarrow{l_2}$, $\overrightarrow{l_3}$ は, 大きさがそれぞれ S_1 , S_2 , S_3 であり, 向きがそれぞれ平面 PAB, 平面 PBC, 平面 PCA に垂直であるとする. ただし, $\overrightarrow{l_1}$, $\overrightarrow{l_2}$, $\overrightarrow{l_3}$ のz成分はすべて正とする. このとき, $\overrightarrow{l_1}$ + $\overrightarrow{l_2}$ + $\overrightarrow{l_3}$ のz成分は \triangle ABC の面積に等しいことを示せ.
- (3) 3 辺 AB, BC, CA の長さの比 AB:BC:CA を, α_1 , α_2 , α_3 , S_1 , S_2 , S_3 を用いて表せ.