2012年理(数·物·化)第1問

- 1 次の問いに答えよ.
- (1) 1から9までの番号が書かれた9個のポールが袋に入っている.この袋の中から1個のボールを取り出し、 その番号を確認してからもとに戻す試行を考える.
- (i) この試行を3回行ったとき,同じ番号のボールを少なくとも2回取り出す確率は ア | イ | ウ | エ | である。
- (2) $t \in t > 1$ をみたす実数とし、xy 平面上で次の方程式で表される 3 直線 ℓ_1 、 ℓ_2 、 ℓ_3 を考える.

$$\ell_1 : tx - y = 0$$

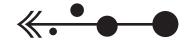
 $\ell_2 : x - ty - t^2 = 0$
 $\ell_3 : x + ty - t^2 = 0$

 ℓ_1 、 ℓ_2 、 ℓ_3 で囲まれる三角形の面積を S(t) とし、この三角形の x 軸の上側の部分の面積を $S_1(t)$ 、x 軸の下側の部分の面積を $S_2(t)$ とする.

- (ii) $S(t) = \frac{t}{t}$ であり、S(t) を t で微分して符号を調べることにより、S(t) は $t = \begin{pmatrix} \boxed{\text{ス}} \\ \hline \text{セ} \end{pmatrix}$ で最小値をとることがわかり、最小値は

となる.

(3) pを実数とし、方程式 $x^3-px^2-\frac{13}{4}x+\frac{15}{8}=0$ は 3つの実数解 $a,\ b,\ c\ (a>b>c)$ をもつとする. a+c=2b をみたすとき、


$$a = \frac{\boxed{\square}}{\boxed{\square}}, \quad b = \frac{\boxed{\upbelow$$

である.

(4) Oを原点とする空間内に3点A,B,Cがある.

$$|\overrightarrow{OA}| = 2$$
, $|\overrightarrow{OB}| = 1$, $|\overrightarrow{OC}| = 3$

であり、 \overrightarrow{OA} 、 \overrightarrow{OB} 、 \overrightarrow{OC} のどの 2 つのなす角も $\frac{\pi}{3}$ であるとする.G を \triangle ABC の重心とし,M を AB の中

点, NをBCの中点, LをMNの中点とする. このとき,

$$|\overrightarrow{OG}| = \frac{|\overrightarrow{\pi}|}{|\overrightarrow{\nabla}|}, \quad |\overrightarrow{GL}| = \frac{\sqrt{|\vec{\xi}|}|\overrightarrow{\Delta}|}{|\cancel{X}|}$$

である.