

2016年第2問

2 xy 平面の直線 y=(an 2 heta)x を ℓ とする.ただし $0< heta<rac{\pi}{4}$ とする.図で示すように,円 C_1 , C_2 を以 下の(i)~(iv)で定める.

- (i) 円 C_1 は直線 ℓ および x 軸の正の部分と接する.
- (ii) 円 C_1 の中心は第1象限にあり、原点 O から中心までの距離 d_1 は $\sin 2\theta$ である.
- (iii) 円 C_2 は直線 ℓ , x 軸の正の部分, および円 C_1 と接する.
- (iv) 円 C_2 の中心は第1象限にあり、原点 Oから中心までの距離 d_2 は $d_1 > d_2$ を満たす.

円 C_1 と円 C_2 の共通接線のうち、x 軸、直線 ℓ と異なる直線を m とし、直線 m と直線 ℓ 、x 軸との交点をそれ ぞれ P, Qとする.

- (1) 円 C_1 , C_2 の半径を $\sin \theta$, $\cos \theta$ を用いて表せ.
- (2) θ が $0 < \theta < \frac{\pi}{4}$ の範囲を動くとき、線分 PQ の長さの最大値を求めよ.
- (3) (2)の最大値を与える θ について直線mの方程式を求めよ.

