スポンサーリンク
2
一辺の長さが1の正二十面体Wのすべての頂点が球Sの表面上にあるとき,次の問いに答えよ.なお,正二十面体は,すべての面が合同な正三角形であり,各頂点は5つの正三角形に共有されている.(1)正二十面体の頂点の総数を求めよ.(2)正二十面体Wの1つの頂点をA,頂点Aからの距離が1である5つの頂点をB,C,D,E,Fとする.sin36°=\frac{\sqrt{10-2√5}}{4}を用いて,正五角形BCDEFの外接円の半径Rと対角線BEの長さを求めよ.(3)2つの頂点D,Eからの距離が1である2つの頂点のうち,頂点Aでない方をGとする.球Sの直径BGの長さを求めよ.(4)球Sの中心をOとする.△DEGを底面とする三角錐ODEGの体積を求めよ.
2
現在、HTML版は開発中です。

問題PDF つぶやく 印刷 印刷
試験前で混乱するので解答のご要望は締め切りました。なお、現時点で解答がついていない問題は解答は来年度以降になります。すべてのご要望に答えられずご迷惑をおかけします。

コメント(0件)

現在この問題に関するコメントはありません。


書き込むにはログインが必要です。