タグ「確率変数」の検索結果

1ページ目:全9問中1問~10問を表示)
    鹿児島大学 国立 鹿児島大学 2014年 第7問
    2つの確率変数X,Yの確率分布を同時に考えた表(同時確率分布表)が下のように与えられている.ただし,X,Yは互いに独立であり,0<a<1,0<b<1とする.このとき,次の各問いに答えよ.
    (プレビューでは図は省略します)
    (1)表を完成させ,完成させた表を書け.
    (2)確率変数W=X-Yの平均E(W)を求めよ.
    (3)確率変数Z=Y/Xの確率分布表を作成し,Zの平均E(Z)を求めよ.
    (4)E(Z)=9/4,E(W)=-3/2となる場合に,Zの分散V(Z)を求めよ.
    鹿児島大学 国立 鹿児島大学 2014年 第8問
    次の各問いに答えよ.
    (1)数字1が書かれた玉a個(a≧1)と,数字2が書かれた玉1個がある.これらa+1個の玉を母集団として,玉に書かれている数字を変量とする.このとき,この母集団から復元抽出によって大きさ3の無作為標本を抽出し,その玉の数字を取り出した順にX1,X2,X3とする.標本平均\overline{X}=\frac{X1+X2+X3}{3}の平均E(\overline{X})が3/2であるとき,\overline{X}の確率分布とその分散V(\overline{X})を求めよ.ただし,復・・・
    浜松医科大学 国立 浜松医科大学 2014年 第3問
    以下の問いに答えよ.
    (1)rは自然数,nはrより大きい整数とする.2項係数\comb{k+r}{r}(k=0,1,・・・,n-r)の次の等式を示せ.
    Σ_{k=0}^{n-r}\comb{k+r}{r}=\comb{n+1}{r+1}
    以下整数n(n≧2)に対し,次の確率分布に従う確率変数Xを考える.
    P(X=k)=\frac{\comb{k+1}{1}}{\comb{n+1}{2}}(k=0,1,・・・,n-1)
    (2)Xの期待値\mun=E(X)を求めよ.また,P(X≧m)≧1/2を満たす最大の整数mをMnとするとき,極限値\d・・・
    鹿児島大学 国立 鹿児島大学 2013年 第7問
    0,1,2,3,4の数字が1つずつ記入された5枚のカードがある.この5枚のカードの中から1枚引き,数字を記録して戻すという作業を3回繰り返す.ただし,3回ともどのカードを引く確率も等しいとする.記録した3つの数字の最小値をXとするとき,次の各問いに答えよ.
    (1)k=0,1,2,3,4に対して確率P(X≧k)を求めよ.
    (2)確率変数Xの確率分布を表で表せ.
    (3)確率変数Xの平均(期待値)E(X)を求めよ.
    (4)確率変数Xの分散V(X)を求めよ.
    鹿児島大学 国立 鹿児島大学 2013年 第8問
    確率変数Xのとる値の範囲が0≦X≦2で,その確率密度関数f(x)が次の式で与えられるものとする.
    f(x)={\begin{array}{ll}
    k/ax&(0≦x≦a)\
    \frac{k}{2-a}(2-x)&(a<x≦2)
    \end{array}.
    ここで,a,kは0<a<1,k>0を満たす定数である.次の各問いに答えよ.
    (1)定数kの値を求めよ.
    (2)Xの平均(期待値)E(X)をaを用いて表せ.
    (3)P(X≦u)=0.5となる実数uをaを用いて表せ.
    鹿児島大学 国立 鹿児島大学 2012年 第8問
    確率変数Zが標準正規分布N(0,1)に従うとき,
    P(Z>1.96)=0.025,P(Z>2.58)=0.005,\frac{2.58}{1.96}\fallingdotseq1.32
    であるとして,次の各問いに答えよ.
    (1)確率変数Xのとる値xの範囲が-1≦x≦1で,その確率密度関数がf(x)=k(1-x2)で与えられている.このとき,定数kの値とXの平均を求めよ.
    (2)母平均m,母標準偏差10の母集団から大きさ100の無作為標本を抽出し,その標本平均を\overline{X^{\phantom{1}}\!\!}とする.標本の大きさ100は十分大きい数であるとみなせると・・・
    浜松医科大学 国立 浜松医科大学 2012年 第4問
    1個のさいころを3回投げる.1回目,2回目,3回目に出る目の数をそれぞれX1,X2,X3として,3つの確率変数
    Y=4X1+X2,Z1=2X1+3X2,Z2=2X1+3X3
    を定める.1から6までの目は等確率で出るものとするとき,以下の問いに答えよ.
    (1)数の集合U={x\;|\;x は整数かつ 5≦x≦30}を全体集合として,
    \begin{array}{l}
    S={x\;\bigg|\;x\inU かつ P(Y=x)>1/36}\\\
    T={x\;\bigg|\・・・
    鹿児島大学 国立 鹿児島大学 2011年 第8問
    次の各問いに答えよ.
    (1)確率変数Xは0以上3以下の値をとり,その確率密度関数f(x)は次で与えられているとする.このとき,定数k,平均E(X)を求めよ.
    f(x)={
    \begin{array}{cl}
    1/2&(0≦x<1 のとき )\\
    -1/4x+k&(1≦x≦3 のとき )
    \end{array}
    .
    (2)Zを標準正規分布N(0,1)に従う確率変数とする.また,任意のx(x≧0)に対して,関数g(x)をg(x)=P(0≦Z≦x)とおく.このとき,次・・・
    鹿児島大学 国立 鹿児島大学 2010年 第8問
    数字1が書かれたカードが1枚,数字2が書かれたカードが2枚,数字3が書かれたカードが1枚の合計4枚のカードがある.この4枚のカードを母集団とし,カードに書かれている数字を変量とする.このとき,次の各問いに答えよ.ただし,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを1個ずつ取り出すことを復元抽出といい,取り出したものをもとに戻さずに続けて抽出することを非復元抽出という.
    (1)母平均mと母標準偏差\sigmaを求めよ.
    (2)この母集団から,非復元抽出によって,大きさ2の無作為標本・・・
スポンサーリンク

「確率変数」とは・・・

 まだこのタグの説明は執筆されていません。